A general framework for solving Riemann-Hilbert problems numerically
نویسنده
چکیده
A new, numerical framework for the approximation of solutions to matrix-valued Riemann–Hilbert problems is developed, based on a recent method for the homogeneous Painlevé II Riemann–Hilbert problem. We demonstrate its effectiveness by computing solutions to other Painlevé transcendents. An implementation in Mathematica is made available online.
منابع مشابه
Numerical solution of Riemann–Hilbert problems: random matrix theory and orthogonal polynomials
In recent developments, a general approach for solving Riemann–Hilbert problems numerically has been developed. We review this numerical framework, and apply it to the calculation of orthogonal polynomials on the real line. Combining this numerical algorithm with an approach to compute Fredholm determinants, we are able to calculate empirical measures and gap statistics for general finite-dimen...
متن کاملNumerical Solution of Riemann-Hilbert Problems: Painlevé II
We describe a new, spectrally accurate method for solving matrixvalued Riemann–Hilbert problems numerically. The effectiveness of this approach is demonstrated by computing solutions to the homogeneous Painlevé II equation. This can be used to relate initial conditions with asymptotic behaviour.
متن کاملNonlinear steepest descent and the numerical solution of Riemann–Hilbert problems
The effective and efficient numerical solution of Riemann–Hilbert problems has been demonstrated in recent work. With the aid of ideas from the method of nonlinear steepest descent for Riemann– Hilbert problems, the resulting numerical methods have been shown numerically to retain accuracy as values of certain parameters become arbitrarily large. The primary aim of this paper is to prove that t...
متن کامل$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 122 شماره
صفحات -
تاریخ انتشار 2012